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Adaptive Sampling

An algorithmic paradigm for solving many data summarization tasks.



Adaptive Sampling

An algorithmic paradigm for solving many data summarization tasks.

Given: n vectors in R?

 Sample a vector w.p. proportional to its norm

* Project all vectors away from the selected subspace

* Repeat on the residuals
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Data Summarization Tasks

Given: Rows correspond to n data points
* nbyd matrix A4 € RPxd e.g. feature vectors of objects in a dataset

* parameter k

Goal:
* Find a representation (of “size k”) for the data

* Optimize a predefined function




Data Summarization Tasks

Given:
 n by d matrix A € R**d

* parameter k

* Find a subset S of k rows
minimizing the squared

distance of all rows to the
subspace of S

Goal:
* Find a representation (of “size k”) for the data
« Optimize a predefined function |A — Projs(A)|l g

Instances: » Best set of representatives
 Row/Column subset selection
* Subspace approximation

* Projective clustering

* Volume sampling/maximization




Data Summarization Tasks

Given:
 n by d matrix A € R**d

* parameter k

* Find a subspace H of
dimension k minimizing the
squared distance of all rows to
H

Goal:

* Find a representation (of “size k”) for the data .
|A — Projy (A)|lr

» Best approximation with a
subspace

* Optimize a predefined function
Instances:

* Row/Column subset selection

e Subspace approximation

* Projective clustering

* Volume sampling/maximization




Data Summarization Tasks

Given:
 n by d matrix A € R**d

* parameter k

* Find s subspaces Hy, ..., H,
each of dimension k
minimizing

Yi=1 d(4;, H)?

Goal:
* Find a representation (of “size k”) for the data
* Optimize a predefined function

Instances: » Best approximation with

 Row/Column subset selection several subspaces
* Subspace approximation
* Projective clustering

* Volume sampling/maximization




Data Summarization Tasks

Given:
 n by d matrix A € R**d

* parameter k

* Find a subset S of k rows that
maximizes the volume of the

Goal: parallelepiped spanned by S
* Find a representation (of “size k”) for the data
* Optimize a predefined function » Notion for capturing diversity
Instances: » Maximizing diversity
* Row/Column subset selection
* Subspace approximation

* Projective clustering

* Volume sampling/maximization




Data Summarization Tasks

Given:

 n by d matrix A € R**d

* parameter k

Goal:

* Find a representation (of “size k”) for the data
* Optimize a predefined function

Instances:

* Row/Column subset selection

» Subspace approximation Adaptive sampling is used to derive
- : algorithms for all these tasks
* Projective clustering

* Volume sampling/maximization




Adaptive Sampling

[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

e Sample row i w.p. proportional to distance squared ||4;]|5

« Given: 1 by d matrix A € R™4 parameter k

2
1415
1All%

* Sample arow A4; with probability




Adaptive Sampling

[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

e Sample row i w.p. proportional to distance squared ||4;]|5

« Given: 1 by d matrix A € R™4 parameter k

2
1415
1All%

* Sample arow A4; with probability
Frobenius norm:

IAllF = \/ZiZjAlz,j




Project away from sampled subspace

Adaptive Sampling

M™ :Moore-Penrose Pseudoinverse

[DeshpandeVempala06, DeshpandeVaradarajan07, Des ERademacherVempalaWang06]

 Sample row i w.p. proportional to ||4;(I — M*M)||5

* Given: n by d matrix A € R™*%, parameter k
o M « @
e For k rounds,

2
|4;(1I-MT M)

* Sample arow A4; with probability 3
la(1-M*M)| ¢

* Append 4; to M




Project away from sampled subspace

Adaptive Sampling

M™ :Moore-Penrose Pseudoinverse

[DeshpandeVempala06, DeshpandeVaradarajan07, Des BRademacherVempalaWang06]

 Sample row i w.p. proportional to ||4;(I — M*M)||5

* Given: n by d matrix A € R™*%, parameter k
o M « @
e For k rounds,

2
|4;(1I-MT M)

* Sample arow A4; with probability 3
la(1-M*M)| ¢

Seems inherently sequential

* Append 4; to M




Question:

Can we implement Adaptive Sampling in one pass (non-adaptively)?
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Streaming Algorithms

Motivation: Data is huge and cannot be stored in the main memory

Streaming algorithms: Given sequential access to the data, make one or several passes over input
* Solve the problem on the fly

* Use sub-linear storage

Parameters: Space, number of passes, approximation
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000101011000019 501
ehé?aneeenen@@l %@meﬂgx\,&
177911100010000001 09010 600
%8100000010001010

Motivation: Data is huge and cannot be stored in the main memory

Streaming algorithms: Given sequential access to the data, make one or several passes over input
* Solve the problem on the fly

* Use sub-linear storage

Parameters: Space, number of passes, approximation

Models:

* Row Arrival: rows of A arrive one by one

* Turnstile: we receive updates to the entries of the matrixi.e., (i,j,A) means 4; ; <« A; ; + A
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Streaming Algorithms
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Motivation: Data is huge and cannot be stored in the main memory

Streaming algorithms: Given sequential access to the data, make one or several passes over input
* Solve the problem on the fly

* Use sub-linear storage

Parameters: Space, number of passes, approximation

Models:

Focus on the row arrival model for the talk

* Row Arrival: rows of A arrive one by one

* Turnstile: we receive updates to the entries of the matrixi.e., (i,j,A) means 4; ; <« A; ; + A
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Motivation: Data is huge and cannot be stored in the main memory

Streaming algorithms: Given sequential access to the data, make one or several passes over input
* Solve the problem on the fly

* Use sub-linear storage

Parameters: Space, number of passes, approximation

Models: _
‘ Focus on the row arrival model for the talk \

* Row Arrival: rows of A arrive one by one

* Turnstile: we receive updates to the entries of the matrixi.e., (i,j,A) means 4; ; <« A; ; + A

Our goal: Simulate k rounds of adaptive sampling in 1 pass of streaming

» Data Summarization tasks were considered in the streaming models in earlier works that used
adaptive sampling [e.g. DV’'06, DR’10, DRVW’06]




Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
* L, , sampling with post processing matrix P

2. Applications in turnstile stream

 Row/column subset selection
* Subspace approximation

* Projective clustering

* Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival




Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
* L, , sampling with post processing matrix P

2. Applications in turnstile stream

* Row/column subset selection
* Subspace approximation

* Projective clustering

* Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival




Results: L, , Sampling with Post-Processing

Gput:

e A€ R™? asa (turnstile) stream
e apost-processing P € R%*x¢

Output: samples anindex i € [n] w.p.

\_

14; P13
|AP||%

~




Results: L, , Sampling with Post-Processing

Gput:

e A€ R™? asa (turnstile) stream
e apost-processing P € R%*x¢

Output: samples anindex i € [n] w.p.

\_

N\

P corresponds to the projection
matrix (I — M+ M)

14; P13
|AP||%

/




Results: L, , Sampling with Post-Processing

Gput:

« A € R™? asa (turnstile) stream
a post-processing P € R4*4

Output: samples an indexi € [n] w.p. (1 + ¢€)

v" |In one pass
v poly(d, e 1,1logn) space

\_

14;P||3
|AP||%

_I_

1

poly(n)

~

/




Results: L, , Sampling with Post-Processing

Gput: \

e A€ R™? asa (turnstile) stream
e apost-processing P € R%*x¢

14;P||3 41
|IAP||% ~ poly(n)

Output: samples an indexi € [n] w.p. (1 + €)

v" |In one pass
v poly(d, e 1,1logn) space

\_ /

Impossible to return entire row instead of index in sublinear space
1 A long stream of small updates + an arbitrarily large update




Results: L,, » Sampling with Post-Processing

Gput: \

» A € R™4 as a (turnstile) stream, p € {1, 2}
e apost-processing P € R%*x¢

14;P||5 1
1APIY, ~ poly(n)

Output: samples an index i € [n] w.p. (1 + €)

v" |In one pass

\ v poly(d,e 1, logn) space /

Impossible to return entire row instead of index in sublinear space
1 A long stream of small updates + an arbitrarily large update




Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream

* L, , sampling with post processing matrix P

2. Applications in turnstile stream

 Row/column subset selection
* Subspace approximation

* Projective clustering

* Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival

\_




Results: Adaptive Sampling

Input: A € R™? as a (turnstile) stream
Output: Return each set S ¢, [n] of k indices w.p. pg s.t.
2islps —qs|l <€
* (s: prob. of selecting S via adaptive sampling
* w.rt. either distance or squared distance (i.e., p € {1,2})




Results: Adaptive Sampling

Input: A € R™? as a (turnstile) stream
Output: Return each set S ¢, [n] of k indices w.p. pg s.t.

2slps —qsl <€
* (g: prob. of selecting S via adaptive sampling
* w.rt. either distance or squared distance (i.e., p € {1,2})

v" In one pass

v poly(d, k,e"1,logn) space

\_




Results: Adaptive Sampling

Input: A € R™? as a (turnstile) stream
Output: Return each set S ¢, [n] of k indices w.p. pg s.t.
d2slps —qs| < e
* (s: prob. of selecting S via adaptive sampling
* w.rt. either distance or squared distance (i.e., p € {1,2})

v" In one pass
v poly(d, k,e"1,logn) space

v Besides indices S, a noisy set of rows 14, ..., 73, are returned
* Each 1y is close to the corresponding A; (w.r.t. residual)

\_




Results: Adaptive Sampling

Input: A € R™? as a (turnstile) stream
Output: Return each set S ¢, [n] of k indices w.p. pg s.t.
d2slps —qs| < e
* (s: prob. of selecting S via adaptive sampling
* w.rt. either distance or squared distance (i.e., p € {1,2})

v" In one pass
v poly(d, k,e"1,logn) space

v Besides indices S, a noisy set of rows 14, ..., 73, are returned
* Each 1y is close to the corresponding A; (w.r.t. residual)

\_

Impossible to return the row accurately in sublinear space
1 A long stream of small updates + an arbitrarily large update




Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
* L, , sampling with post processing matrix P

2. Applications in turnstile stream

 Row/column subset selection
* Subspace approximation

* Projective clustering

* Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival

.




Applications: Row Subset Selection

4 )
Input: A € R™*? and an integer k > 0

Output: k rows of A to form M to minimize [|A — AM*M||-
e



Applications: Row Subset Selection

-
Input: A € R™? and an integer k > 0

kOutput: k rows of A to form M to minimize ||A — AM*M||x

Our Result: finds M such that,

Prll|A — AM*M||%2 < 16(k + 1! ||A — 4, ]I21 = 2/3
* A;: best rank-k approximation of A
* first one pass turnstile streaming algorithm
* poly(d, k,1logn) space




Applications: Row Subset Selection

4 )
Input: A € R™? and an integer k > 0

kOutput: k rows of A to form M to minimize ||A — AM*M||x )

Our Result: finds M such that,

Prll|A — AM*M||%2 < 16(k + 1! ||A — 4, ]I21 = 2/3
* A;: best rank-k approximation of A
* first one pass turnstile streaming algorithm
* poly(d, k,1logn) space

» Previous works: centralized setting [e.g. DRVWO06, BMDO09, GS’12] and row arrival
[e.g., CMM’17, GP’14 , BDMMUWZ’18]



Applications: Subspace Approximation

(Input: A € R™? and an integer k > 0
Output: k-dim subspace H to minimize (X1~ d(4;, H)P)/P

p € {1,2}
d(4;, H) = ||[4;(I — HTH)||,




Applications: Subspace Approximation

)

nput: A € R™4 and an integer k > 0
Output: k-dim subspace H to minimize (X1~ d(4;, H)P)/P

- p€{l2}
« d(4;,H) = |1A;(I-H H)Il,

Our Result I: finds H (which is k noisy rows of A) s.t.,
PrI(Ci d(Ay, H)P)YP < 4(k + D! (T d(Ay, A)P) VP12 3

* A;: best rank-k approximation of A

* poly(d, k,logn) space



Applications: Subspace Approximation

g

nput: A € R™4 and an integer k > 0
Output: k-dim subspace H to minimize (X1~ d(4;, H)P)/P

- p€{l2}
« d(4;,H) = |1A;(I-H H)Il,

Our Result I: finds H (which is k noisy rows of A) s.t.,
Pr[(Z?:l d(AiJ H)p)l/p S 4(k + 1)' (Z?:]_ d(Ai, Ak)p)l/p] 2

* A;: best rank-k approximation of A

wIlN

* poly(d, k,logn) space
* First relative error on turnstile streams that returns noisy rows of A

» [Levin, Sevekari, Woodruff’18]
+(1 + €)-approximation —larger number of rows —rows are not from A



Applications: Subspace Approximation

g

nput: A € R™4 and an integer k > 0

Output: k-dim subspace H to minimize X1~ d(4;, H)P)'/?
* pe{ll]

* d(A;,H) = [|A;(I—HH)|l,

Our Result llI: finds H (which is poly(k, 1/€) noisy rows of A) s.t.,
PrI(ST 1 d(Ay, )PP < (14 (T d(Ay, AP P] = 2

* A;: best rank-k approximation of A

 poly(d, k,1/¢logn) space

» [Levin, Sevekari, Woodruff’18]
—poly(log(nd), k, 1/€) rows —rows are not from A




Applications: Projective Clustering

-
Input: 4 € R™*4, target dim k and target number of subspaces s
Output: s k-dim subspaces Hy, ..., Hg to minimize (X1, d(4;, H)P)/P

\

* H= H{U--UHgandp € {1,2}
e d(A;,H) = !r,rel%gllfli(ﬂ — Hf+Hj)||2




Applications: Projective Clustering

-
Input: 4 € R™*4, target dim k and target number of subspaces s
Output: s k-dim subspaces Hy, ..., Hg to minimize (X1, d(4;, H)P)/P

e H= H{U---UH andp € {1,2}

 dCa, H) = minl4,(1 - B H)]

\.

Our Result: finds S (which is poly(k, s, 1/€) noisy rows of A),

which contains a union T of s k-dim subspaces s.t.,
PrI(ZT, d(A, TYP)YP < (1 + €)(Tl, d(4;, H)P)P] = 2/3
* H: optimal solution to projective clustering
* first one pass turnstile streaming algorithm with sublinear space
* poly(d, k,logn,s,1/€) space
> [BHI’02, HM’04, Che09, FIMSW’10] based on coresets, works in row arrival

» [KR’15] turnstile but linear in number of points



Applications: Volume Maximization

Input: A € R™4 and an integer k
Output: k rows ry, ..., 1y of A, M, with maximum volume




Applications: Volume Maximization

s Volume of the parallelepiped
Input: A € R™%% 3nd an integer k spanned by those vectors

Output: k rows ry, ..., 1y of A, M, with maximum volume




Applications: Volume Maximization

Input: A € R™*% and an integer k
Output: k rows ry, ..., 1y of A, M, with maximum volume

L y

Our Result (Upper Bound I): for an approximation factor «, finds S
(set of k noisy rows of A) s.t.,

Prla®(k!)Vol(S) = Vol(M)] = 2/3
* first one pass turnstile streaming algorithm
» 0(ndk?/a?) space




Applications: Volume Maximization

Input: A € R™*% and an integer k
Output: k rows ry, ..., 1y of A, M, with maximum volume

L y

Our Result (Upper Bound I): for an approximation factor «, finds S
(set of k noisy rows of A) s.t.,

Prla®(k!)Vol(S) = Vol(M)] = 2/3
* first one pass turnstile streaming algorithm
» 0(ndk?/a?) space

> [Indyk, M, Oveis Gharan, Rezaei, ‘19 ‘20] coreset based 0 (k)*/€ approx. and
O (n€kd) space for row-arrival streams




Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
* L, , sampling with post processing matrix P

2. Applications in turnstile stream

 Row/column subset selection
* Subspace approximation

* Projective clustering

* Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival

\_




Volume Maximization Lower Bounds

Input: A € R™*% and an integer k
Output: k rows rq, ...,y of A, M, with maximum volume

Our Result (Lower Bound 1): for «, any p-pass algorithm that finds
a®-approximation w.p. = 63/64 in turnstile-arrival requires
Q(n/kpa?) space.

e Our previous upper bound is matches the upper bound up to a
factor of k3d in space and k! in the approximation factor.



Volume Maximization Lower Bounds

Input: A € R™*% and an integer k
Output: k rows ry, ..., 1y of A, M, with maximum volume

\

Our Result (Lower Bound Il): for a fixed constant C, any one-pass
algorithm that finds C*-approximation w.p. > 63/64 in random
order row-arrival requires {1(n) space




Volume Maximization — Row Arrival

Input: A € R™*% and an integer k
Output: k rows ry, ..., 1y of A, M, with maximum volume

L y

Our Result (Upper Bound Il): for an approximation factor € < (logn) /k,
finds S (set of k rows of A) s.t.

« approximation factor O (Ck)*/? with high probability
* one pass row-arrival streaming algorithm
e 0(n°/Oq) space



Volume Maximization — Row Arrival

Input: A € R™*% and an integer k
Output: k rows ry, ..., 1y of A, M, with maximum volume

\.

Our Result (Upper Bound Il): for an approximation factor € < (logn) /k,
finds S (set of k rows of A) s.t.

« approximation factor O (Ck)*/? with high probability
* one pass row-arrival streaming algorithm
e 0(n°/Oq) space

> [Indyk, M, Oveis Gharan, Rezaei, ‘19 20] coreset based O (k)¢*/? approx. and 0 (n'/¢kd)
space for row-arrival streams



1. Simulate adaptive sampling in 1 pass

* L, , sampling with post processing matrix P

Lp,z Sa m p I e r 2. Applications in turnstile stream

* Row/column subset selection
* Subspace approximation
* Projective clustering

* \olume Maximization
3. Volume maximization lower bounds

4, Volume maximization in row arrival




L, , Sampler with Post-Processing Matrix




L, , Sampler with Post-Processing Matrix

Input: matrix A as a data stream, a post-processing matrix P

14;P||3

Output: index i of a row of AP sampled w.p. ~ 14|12
F

Extension of L, Sampler
[Andoni et al.”10][Monemizadeh, Woodruff’10][Jowhari et al.”11][Jayaram, Woodruff’18]

Input: vector f as a data stream

7
1£115

Output: index i of a coordinate of f sampled w.p. ~




L, , Sampler with Post-Processing Matrix

Input: matrix A as a data stream, a post-processing matrix P

14;P||3

Output: index i of a row of AP sampled w.p. ~ 14|12
F

What is new:

. 1. Generalizing vectors to matrices
Extension of L, Sampler _ , _
2. Handling the post processing matrix P

[Andoni et al”10][Monemizadeh, Wooc Jruff’18]

Input: vector f as a data stream

7
1£115

Output: index i of a coordinate of f sampled w.p. ~




L, , Sampler

Input: matrix A as a data stream

14;115 lgnore P for now
IA]|%

Output: index i of a row of A sampled w.p. ~



L, , Sampler

Step 1.
 pick t; € |0,1] uniformly at random




L, , Sampler

Step 1.
« pickt; € [0, 1] uniformly at random

= — X A
NG

* setB;




L, , Sampler

Step 1.
« pickt; € [0, 1] uniformly at random

= — X A
NG

* setB;

114;113 14;115
Prii|B;ll5 = ||All2] = Pr-=t2 > t;] = =12
1A]|% 14]|%




L, , Sampler

Step 1.
« pickt; € [0, 1] uniformly at random

= — X A
NG

* setB;

114;113 14;115
Prii|B;ll5 = ||All2] = Pr-=t2 > t;] = =12
1A]|% 14]|%

(] Return i that satisfies IIBiII% > ||A||,2,~




L, , Sampler

Step 1.
« pickt; € [0, 1] uniformly at random

1
* setB; —fx

[Pr[nB 13 > 1141131 = prldiz >

lallE —

ti] -

14113
1412

1

1 Return i that satisfies ||Bl||2 ||A||F

Issues:

1. Multiple rows passing the threshold

2. Don’t have access to exact values of ||Bl||% and ||A||,2;




Issue 1: Multiple rows passing the threshold

L 22 Sam pIer > Set the threshold higher

Step 1.
o pick t; € |0,1] uniformly at random

1
o setBi :=\/_t_XAi
i

3 Ideally, return the only i that satisfies || B;||5 > ||A||%

A;
PrilBII3 = v? - 143 = x 1o




Issue 1: Multiple rows passing the threshold

L 22 Sam pIer > Set the threshold higher

Step 1.
o pick t; € |0,1] uniformly at random

1
¢ SEtBi :Z\/TXAL.

3 Ideally, return the only i that satisfies || B;||5 > ||4]|%

(] 1
[Pr[IIBiII%zy IIAIIF]-— ”A‘”;] y?:==8% | Success prob: A7)

_ 1
Pr[squared norm of at least one row exceeds y* - ||4]|4] = Q(y—z)

_ 1
Pr[squared norms of more than one row exceed y* - ||4]|%] = O(y—4)



Issue 1: Multiple rows passing the threshold

L 22 Sam pIer > Set the threshold higher

Step 1.
o pick t; € |0,1] uniformly at random

1
¢ SEtBi :Z\/_t_XAi
i

3 Ideally, return the only i that satisfies || B;||5 > ||A||%

||A I5 C1
[Pr[llBlH% > y ”A”F] - = ”Al”; ] y2: — Oegn Success prob: 'Q(logn)

To succeed, repeat O(1/€)



Issue 2: Don’t have access to exact values of||B;|| and ||A||g

L, , Sampler > estimate || ||, and [14];

Step 1.

o pick t; € |0,1] uniformly at random
* setB; :=i><Al-

N
 Return i that satisfies ||B;||, = v - ||Al|¢




Issue 2: Don’t have access to exact values of||B;|| and ||A||g

L, , Sampler > estimate || ||, and [14];

W

Step 1.

Find heaviest row Estimate norm

* pickt; € [911] unifo using CountSketch of A using AMS
* set Bi = _t X Ai
!

o

 Return i that satisfies || B;||, = v - ||Al|¢




Count Sketch

Estimate || B;||, for rows with large norms




Count Sketch

Given a stream of items, estimate frequency of each item (i.e., coordinates
in a vector)

#rows r =0(logn) * Hash h;:[n| - [b]
#buckets/row b=0(1/€%) » Sign 0;:[n] - {—1,+1}

&Hﬁ-

f Update: C[j,h;(i)] += o;(i) - f;




Count Sketch

Given a stream of items, estimate frequency of each item (i.e., coordinates
in a vector)

Hrows r =0(logn) * Hash h;:[n] - [b]
#tbuckets/row b= 0(1/€%) » Sign 0;:[n] - {—1,+1}
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Count Sketch

Given a stream of items, estimate frequency of each item (i.e., coordinates
in a vector)

#rows r =0(logn) * Hash h;:[n] - [b]
#tbuckets/row b= 0(1/€%) » Sign 0;:[n] - {—1,+1}
/L_I_fi ‘ * Update: C[j,h;())] +=0;(0) - f;

f —f

* Estimate f; := median; 6;C[j, h;(i)]
+f




Count Sketch

Given a stream of items, estimate frequency of each item (i.e., coordinates

in a vector)
Estimation guarantee
#rows r =0(logn) A<
#tbuckets/row b=0(1/€%) fi —fil < e Ifll;

/LJ’fi | » Update: C[j,h;(D)] +=0;(0) - f;

f; —fi , .
* Estimate f; .= median; o;C[j, h;(i)]

+f




Count Sketch

Estimate || B;||, for rows with large norms

Estimation guarantee
#rows r =0(logn) _
#tbuckets/row b=0(1/€?%) ‘”Bi“z — ”Bi”2 <e-||BllF
/L +B; ‘ Space usage:
. —B. 1
B; Bi 0(lognx—2>><d
+B; €
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L, , Sampler

Step 1.
« pickt; € [O 1] uniformly at random

Goal: |B;|l, = v ||Allr

Step 2.
HE\, Hzis an estimate of || B;||, by modified Countsketch

 Fisan estimate of ||A||r by modified AMS

Test: || B; Hz >y-F

» The test succeeds w.p. €, the estimate of largest row exceeds the threshold
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Input: matrix A as a data stream, a post-processing matrix P

14;P||3

Output: index i of a row of AP sampled w.p. ~ 14|12
F




Handling Post-Processing Matrix

Input: matrix A as a data stream, a post-processing matrix P

14;P||3
|IAP||%

Output: index i of a row of AP sampled w.p. ~

Run proposed algorithm on A, then multiply by P:
 CountSketch and AMS both are linear transformations

v A is mapped to SA
v' S (AP) = (SA) P



Handling Post-Processing Matrix

Input: matrix A as a data stream, a post-processing matrix P

14;P||3

Output: index i of a row of AP sampled w.p. ~ 14|12
F

Run proposed algorithm on A, then multiply by P:
 CountSketch and AMS both are linear transformations

v A is mapped to SA
v' S (AP) = (SA) P

Total space for sampler: 0(‘%10g2 n) bits



L, , sampling with post processing
Input:

e A€ R™? asa (turnstile) stream

e apost-processing P € R%*¢

14;P||3 41
IAP||% ~ poly(n)

Output: samples anindexi € [n] w.p. (1 + €)

v" |In one pass
v poly(d, e 1,logn) space



1. Simulate adaptive sampling in 1 pass

* Ly, sampling with post processing matrix P

Ad a ptive Sa m p I e r 2. Applications in turnstile stream

* Row/column subset selection
* Subspace approximation
* Projective clustering

* \olume Maximization
3. Volume maximization lower bounds

4, Volume maximization in row arrival
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Maintain k instances of L, , sampler with post processing: Sy, ..., Sk
M<0Q
Forroundi = 1tok,

e SetP—(I—-—M™M)
* Use §; to sample a noisy row 7;j of A with post processing matrix P
Append 1j to M
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v Sample j,
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Algorithm Using L, , Sampler

Maintain k instances of L, , sampler with post processing: Sy, ..., Sk
M@
Forroundi = 1tok,

e SetP—(I—-—M™M)
* Use §; to sample a noisy row 7;j of A with post processing matrix P
Append 1j to M

Issues:

X Noisy perturbation of rows (unavoidable)
v Sample j,
v'1; = AjP + v where v has small norm [|v]| < e||AjP|| thus ||r]|| ~ ||AjP||

X This can drastically change the probabilities: may zero out probabilities of some rows



Bad Example

A, =(0,1)

1—> A =(M,0)
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Bad Example

AZ(I_M+M) rq

AL (I — M*M)
Noisy row sampling:  ||[A;(I—M*M) || = ||[A,(I —M™M) ||

x Sample one row again and again



Bad Example

L\

Noisy row sampling:  ||[A;(I—M*M) || = ||[A,(I —M™M) ||

L

True row sampling: |JA{(I—M*™M) || =0
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Bad Example

X We cannot hope for a multiplicative bound on probabilities.

Lemma: Not only the norm of v is small in compare to A; but also its norm projected
away from 4; is small:

’T)=A]P+U

AP L. .
* where |[vQ]| < E”AjP” : ”“APQ“LLF for any projection matrix Q

v" Bound the additive error of sampling probabilities in subsequent rounds




Overview of How to Bound the Error

Suppose indices reported by our algorithm are j, ..., Ji

Consider two bases U and W

* U follows True rows: U = {uy, ..., ug} s.t. {uy, ..., u;} spans {4; , s Aj

* W follows Noisy rows: W = {wy, ..., wg} s.t. {wy, ..., w;} spans {riy 1.}
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Overview of How to Bound the Error

Suppose indices reported by our algorithm are j, ..., Ji

Forrow A, :
Consider two bases U and W

* U follows True rows: U = {uy, ..., ug} s.t. {uy, ..., u;} spans {4; , s Aj
_wd
* W follows Noisy rows: W = {wy, ..., wg} s.t. {wy, ..., w;} spans {rj, 1} ( Ay = Dij=1$x,iWi

_ wd
© Ay = N1 Ay il

Sampling probs in terms of U and W in t-th round

d 2
Di=t Mx.i
n d 2
y=1 Zi=t Ay,i

* The correct probability:

d 2
izt $xi
n d 2
y=1 Zi:t gy,i

* What we sample from:




Overview of How to Bound the Error

Suppose indices reported by our algorithm are j, ..., Ji

Forrow A, :
Consider two bases U and W

* U follows True rows: U = {uy, ..., ug} s.t. {uy, ..., u;} spans {4; , s Aj

* W follows Noisy rows: W = {wy, ..., wg} s.t. {wy, ..., w;} spans i) eos 5,

_ wd
© Ay = N1 Ay il

} ( Ay = Ld=1 fx,iWi

Sampling probs in terms of U and W in t-thround | 5 pifference between the correct prob and our algorithm

sampling prob over all rows is € for one round

d 2
Th ¢ babilit z:i=t x,1 * Change of basis matrix = Identity matrix
. e correct probability: o _
;=1 Zfi:t A;,i * Bound total variation distance by €
d 2
di=t Sx.i

» Error in each round gets propagated k times

* What we sample from: — Zd 52.
y=1&i=t Sy,i > Total error is O(k?€)




Theorem:

Our algorithm reports a set of k indices such that with high probability

* the total variation distance between the probability distribution output by the
algorithm and the probability distribution of adaptive sampling is at most O (€)

* The algorithm uses space poly(k,é, d,logn)




1. Simulate adaptive sampling in 1 pass

* Ly, sampling with post processing matrix P

A p p I i Cati O n S 2. Applications in turnstile stream

* Row/column subset selection
* Subspace approximation

* Projective clustering

* Volume Maximization

3. Volume maximization lower bounds

4, Volume maximization in row arrival




Applications

Main Challenge: it suffices to get a noisy perturbation of the rows
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Output: k rows of A to form M to minimize [|A — AM*M||-
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» [DRVW’06]: Volume Sampling provides a (k + 1) factor approximation to row subset selection
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» [DV’06]: Sampling probabilities for any k-set S produced by Adaptive Sampling is at most k! of its
sampling probability with respect to volume sampling.
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Applications: Row Subset Selection

Adaptive Sampling provides a (k + 1)! approximation for subset selection

» [DRVW’06]: Volume Sampling provides a (k + 1) factor approximation to row subset selection
with constant probability.

» [DV’06]: Sampling probabilities for any k-set S produced by Adaptive Sampling is at most k! of its
sampling probability with respect to volume sampling.

Non-adaptive Adaptive Sampling provides a good approximation to Adaptive Sampling

1. For a set of indices J output by our algorithm, ||A(Il — R*R)|lg < (1 + &)||A(I — MTM)||g, w.h.p.
* R:the set of noisy rows corresponding to J

 M: the set of true rows corresponding to J

2. For most k-sets J, its prob. by adaptive sampling is within O(1) factor of Non-adaptive Sampling.



Applications: Row Subset Selection

-
Input: A € R™? and an integer k > 0

kOutput: k rows of A to form M to minimize ||A — AM*M||x

Our Result: finds M such that,

Pril|A — AM*M|)%2 < 16(k + D! |4 — AlI2] = 2/3
* A;: best rank-k approximation of A
* first one pass turnstile streaming algorithm
* poly(d, k,1logn) space
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Output: k rows ry, ..., 1y of A, M, with maximum volume




Applications: Volume Maximization

s Volume of the parallelepiped
Input: A € R™%% 3nd an integer k spanned by those vectors

Output: k rows ry, ..., 1y of A, M, with maximum volume
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* For k rounds, pick the vector that is farthest away from the current
subspace.
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Applications: Volume Maximization

[Civril, Magdon’09] Greedy Algorithm Provides a k! approximation to Volume Maximization

Greedy

* For k rounds, pick the vector that is farthest away from the current
subspace.

k=2
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Applications: Volume Maximization

[Civril, Magdon’09] Greedy Algorithm Provides a k! approximation to Volume Maximization

Simulate Greedy
* Maintain k instances of CountSketch, AMS and L, , Sampler

* For k rounds,
* Let r be the row of AP with largest norm //by CountSketch

2
e If ||7]|? < :;—k |AP||%, instead sample row 1 according to norms of rows

* Add r to the solution, and update the postprocessing matrix P

» If the largest row exceeds the threshold, then it is correctly found by CountSketch w.h.p.

» Otherwise, there are enough large rows and sampler chooses one of them w.h.p.



Applications: Volume Maximization

Input: A € R™4 and an integer k
Output: k rows rq, ..., 1y of A, M, with maximum volume

L y

Our Result: for an approximation factor «, finds S (set of k noisy rows of A)
s.t.,

Pr[a®(k!)Vol(S) = Vol(M)] = 2/3
* first one pass turnstile streaming algorithm
» 0(ndk?/a?) space



Problem
L, Sampler
Adaptive Sampling
Row Subset Selection

Subspace
Approximation

Projective Clustering

Volume Maximization

Model

turnstile

Row
Arrival

Approximation/error

(1 + €) relative +

O(e) total variation distance

O((k+1))
O((k+ 1))
(1+¢€)
(1+e€)
ak (k)

ak
ck
O(Ck)*/2

poly(n)

space
poly(d, e 1,logn)
poly(d, k, e 1,logn)
poly(d, k,1ogn)
poly(d, k,1ogn)
poly(d, k,logn,1/¢)
poly(d, k,logn,s,1/¢€)
0 (ndk?/a?)
Q(n/kpa?)
Q(n)
0(n°1/Oq)

Comments

poly(k,1/€) rows
poly(k,s,1/€) rows

P pass
Random Order

C < (logn)/k



Problem Model Approximation/error

L,, Sampler (1 + €) relative + e
Adaptive Sampling O(¢) total variation distance
Row Subset Selection o((k+1)H
Subspace turnstile O((k+1)!)
Approximation (1+¢€)
Projective Clustering (1+e¢€)
ak (k)
ak
Volume Maximization m
Row C
Arrival 0(Ck)*/?

Open problems

e Get tight dependence on the parameters

* Further applications of non-adaptive adaptive sampling

space
poly(d, e 1,logn)
poly(d, k, e 1,logn)
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poly(d, k,1ogn)
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0 (ndk?/a?)
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Q(n)
0(n°1/Oq)

Comments

poly(k,1/€) rows
poly(k,s,1/€) rows

P pass
Random Order

C < (logn)/k

* Result on Volume Maximization in row arrival model is not tight, i.e., can we get 0 (k)* approximation without

dependence on n?



Problem Model Approximation/error
L,, Sampler (1 + €) relative + e
Adaptive Sampling O(¢) total variation distance
Row Subset Selection o((k+1)H
Subspace turnstile O((k+1)!)
Approximation (1+¢€)
Projective Clustering (1+e¢€)
ak (k)
ok
Volume Maximization m
Row C
Arrival 0(Ck)*/?

Open problems

e Get tight dependence on the parameters

* Further applications of non-adaptive adaptive sampling

space Comments

poly(d, e 1,logn)
poly(d, k, e 1,logn)
poly(d, k,1ogn)
poly(d, k,1ogn)
poly(d, k,logn,1/¢)
poly(d, k,logn,s,1/¢€)

poly(k,1/€) rows
poly(k,s,1/€) rows

0 (ndk?/a?)

Q(n/kpa?) p pass
Q(n) Random Order

0(n°1/Oq) C < (logn)/k

THANK YOU!

* Result on Volume Maximization in row arrival model is not tight, i.e., can we get 0 (k)* approximation without

dependence on n?
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