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An algorithmic paradigm for solving many data summarization tasks.

Adaptive Sampling



An algorithmic paradigm for solving many data summarization tasks.

Adaptive Sampling

Given: 𝑛𝑛 vectors in ℝ𝒅𝒅

• Sample a vector w.p. proportional to its norm
• Project all vectors away from the selected subspace
• Repeat on the residuals
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Data Summarization Tasks
Given: 
• 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅

• parameter 𝑘𝑘
Goal: 
• Find a representation (of “size 𝑘𝑘”) for the data
• Optimize a predefined function

Rows correspond to 𝑛𝑛 data points

e.g. feature vectors of objects in a dataset



Given: 
• 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅

• parameter 𝑘𝑘
Goal: 
• Find a representation (of “size 𝑘𝑘”) for the data
• Optimize a predefined function
Instances:
• Row/Column subset selection
• Subspace approximation
• Projective clustering
• Volume sampling/maximization

Data Summarization Tasks

• Find a subset 𝑆𝑆 of 𝑘𝑘 rows 
minimizing the squared 
distance of all rows to the 
subspace of 𝑆𝑆

𝐴𝐴 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗𝑆𝑆 𝐴𝐴 𝐹𝐹

 Best set of representatives



Data Summarization Tasks
Given: 
• 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅

• parameter 𝑘𝑘
Goal: 
• Find a representation (of “size 𝑘𝑘”) for the data
• Optimize a predefined function
Instances:
• Row/Column subset selection
• Subspace approximation
• Projective clustering
• Volume sampling/maximization

• Find a subspace 𝐻𝐻 of 
dimension 𝑘𝑘 minimizing the 
squared distance of all rows to 
𝐻𝐻

𝐴𝐴 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗𝐻𝐻 𝐴𝐴 𝐹𝐹

 Best approximation with a 
subspace



Data Summarization Tasks
Given: 
• 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅

• parameter 𝑘𝑘
Goal: 
• Find a representation (of “size 𝑘𝑘”) for the data
• Optimize a predefined function
Instances:
• Row/Column subset selection
• Subspace approximation
• Projective clustering
• Volume sampling/maximization

• Find 𝑠𝑠 subspaces 𝐻𝐻1, … ,𝐻𝐻𝑠𝑠
each of dimension 𝑘𝑘
minimizing

∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 2

 Best approximation with 
several subspaces



Data Summarization Tasks
Given: 
• 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅

• parameter 𝑘𝑘
Goal: 
• Find a representation (of “size 𝑘𝑘”) for the data
• Optimize a predefined function
Instances:
• Row/Column subset selection
• Subspace approximation
• Projective clustering
• Volume sampling/maximization

• Find a subset 𝑆𝑆 of 𝑘𝑘 rows that 
maximizes the volume of the 
parallelepiped spanned by 𝑆𝑆

 Notion for capturing diversity
Maximizing diversity 



Given: 
• 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅

• parameter 𝑘𝑘
Goal: 
• Find a representation (of “size 𝑘𝑘”) for the data
• Optimize a predefined function
Instances:
• Row/Column subset selection
• Subspace approximation
• Projective clustering
• Volume sampling/maximization

Data Summarization Tasks

Adaptive sampling is used to derive 
algorithms for all these tasks



Adaptive Sampling
[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

• Sample row 𝑖𝑖 w.p. proportional to distance squared 𝐴𝐴𝑖𝑖 2
2

• Given: 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅, parameter 𝑘𝑘

• Sample  a row 𝐴𝐴𝑖𝑖 with probability    
𝐴𝐴𝑖𝑖 2

2

𝐴𝐴 𝐹𝐹
2



Adaptive Sampling
[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

• Sample row 𝑖𝑖 w.p. proportional to distance squared 𝐴𝐴𝑖𝑖 2
2

• Given: 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅, parameter 𝑘𝑘

• Sample  a row 𝐴𝐴𝑖𝑖 with probability    
𝐴𝐴𝑖𝑖 2

2

𝐴𝐴 𝐹𝐹
2

Frobenius norm:

𝐴𝐴 𝐹𝐹 = ∑𝑖𝑖 ∑𝑗𝑗 𝐴𝐴𝑖𝑖,𝑗𝑗2



Adaptive Sampling
[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

• Sample row 𝑖𝑖 w.p. proportional to 𝐴𝐴𝑖𝑖 𝐼𝐼 − 𝑀𝑀+𝑀𝑀 2
2

• Given: 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅, parameter 𝑘𝑘
• 𝑀𝑀 ← ∅
• For 𝑘𝑘 rounds,

• Sample  a row 𝐴𝐴𝑖𝑖 with probability    
𝐴𝐴𝑖𝑖 𝐼𝐼−𝑀𝑀

+𝑀𝑀 2
2

𝐴𝐴 𝐼𝐼−𝑀𝑀+𝑀𝑀 𝐹𝐹
2

• Append 𝐴𝐴𝑖𝑖 to 𝑀𝑀

Project away from sampled subspace
𝑴𝑴+ :Moore-Penrose Pseudoinverse



Adaptive Sampling
[DeshpandeVempala06, DeshpandeVaradarajan07, DeshpandeRademacherVempalaWang06]

• Sample row 𝑖𝑖 w.p. proportional to 𝐴𝐴𝑖𝑖 𝐼𝐼 − 𝑀𝑀+𝑀𝑀 2
2

• Given: 𝑛𝑛 by 𝑑𝑑 matrix 𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅, parameter 𝑘𝑘
• 𝑀𝑀 ← ∅
• For 𝑘𝑘 rounds,

• Sample  a row 𝐴𝐴𝑖𝑖 with probability    
𝐴𝐴𝑖𝑖 𝐼𝐼−𝑀𝑀

+𝑀𝑀 2
2

𝐴𝐴 𝐼𝐼−𝑀𝑀+𝑀𝑀 𝐹𝐹
2

• Append 𝐴𝐴𝑖𝑖 to 𝑀𝑀

Seems inherently sequential

Project away from sampled subspace
𝑴𝑴+ :Moore-Penrose Pseudoinverse



Question: 

Can we implement Adaptive Sampling in one pass (non-adaptively)?



Streaming Algorithms
Motivation: Data is huge and cannot be stored in the main memory 

Streaming algorithms: Given sequential access to the data, make one or several passes over input

• Solve the problem on the fly

• Use sub-linear storage

Parameters: Space, number of passes, approximation
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Models:

• Row Arrival: rows of 𝐴𝐴 arrive one by one

• Turnstile: we receive updates to the entries of the matrix i.e., (𝑖𝑖, 𝑗𝑗,Δ) means 𝐴𝐴𝑖𝑖,𝑗𝑗 ← 𝐴𝐴𝑖𝑖,𝑗𝑗 + Δ
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Streaming Algorithms
Motivation: Data is huge and cannot be stored in the main memory 

Streaming algorithms: Given sequential access to the data, make one or several passes over input

• Solve the problem on the fly

• Use sub-linear storage

Parameters: Space, number of passes, approximation

Models:

• Row Arrival: rows of 𝐴𝐴 arrive one by one

• Turnstile: we receive updates to the entries of the matrix i.e., (𝑖𝑖, 𝑗𝑗,Δ) means 𝐴𝐴𝑖𝑖,𝑗𝑗 ← 𝐴𝐴𝑖𝑖,𝑗𝑗 + Δ

Focus on the row arrival model for the talk

Our goal: Simulate 𝑘𝑘 rounds of adaptive sampling in 1 pass of streaming
 Data Summarization tasks were considered in the streaming models in earlier works that used 

adaptive sampling [e.g. DV’06, DR’10, DRVW’06]



Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
• 𝐿𝐿𝑝𝑝,2 sampling with post processing matrix 𝑃𝑃

2. Applications in turnstile stream
• Row/column subset selection
• Subspace approximation
• Projective clustering
• Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival



Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
• 𝑳𝑳𝒑𝒑,𝟐𝟐 sampling with post processing matrix 𝑷𝑷

2. Applications in turnstile stream
• Row/column subset selection
• Subspace approximation
• Projective clustering
• Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival



Results: 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampling with Post-Processing

Input:
• 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 as a (turnstile) stream
• a post-processing 𝑷𝑷 ∈ ℝ𝑑𝑑×𝑑𝑑

Output: samples an index 𝑖𝑖 ∈ [𝑛𝑛] w.p. 𝑨𝑨𝒊𝒊𝑷𝑷 2
2

𝑨𝑨𝑨𝑨 𝐹𝐹
2



Results: 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampling with Post-Processing

Input:
• 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 as a (turnstile) stream
• a post-processing 𝑷𝑷 ∈ ℝ𝑑𝑑×𝑑𝑑

Output: samples an index 𝑖𝑖 ∈ [𝑛𝑛] w.p. 𝑨𝑨𝒊𝒊𝑷𝑷 2
2

𝑨𝑨𝑨𝑨 𝐹𝐹
2

𝑷𝑷 corresponds to the projection 
matrix (𝐼𝐼 − 𝑀𝑀+𝑀𝑀)



Results: 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampling with Post-Processing

Input:
• 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 as a (turnstile) stream
• a post-processing 𝑷𝑷 ∈ ℝ𝑑𝑑×𝑑𝑑

Output: samples an index 𝑖𝑖 ∈ [𝑛𝑛] w.p. 1 ± 𝜖𝜖 𝑨𝑨𝒊𝒊𝑷𝑷 2
2

𝑨𝑨𝑨𝑨 𝐹𝐹
2 + 1

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛)
 In one pass
 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑, 𝜖𝜖−1, log𝑛𝑛) space



Results: 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampling with Post-Processing

Impossible to return entire row instead of index in sublinear space
 A long stream of small updates  +  an arbitrarily large update
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Results: 𝑳𝑳𝒑𝒑,𝟐𝟐 Sampling with Post-Processing

Impossible to return entire row instead of index in sublinear space
 A long stream of small updates  +  an arbitrarily large update

Input:
• 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 as a (turnstile) stream, 𝒑𝒑 ∈ {𝟏𝟏,𝟐𝟐}
• a post-processing 𝑷𝑷 ∈ ℝ𝑑𝑑×𝑑𝑑

Output: samples an index 𝑖𝑖 ∈ [𝑛𝑛] w.p. 1 ± 𝜖𝜖 𝑨𝑨𝒊𝒊𝑷𝑷 2
𝒑𝒑

𝑨𝑨𝑨𝑨 𝒑𝒑,𝟐𝟐
𝒑𝒑 + 1

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛)

 In one pass
 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑, 𝜖𝜖−1, log𝑛𝑛) space



Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
• 𝐿𝐿𝑝𝑝,2 sampling with post processing matrix 𝑃𝑃

2. Applications in turnstile stream
• Row/column subset selection
• Subspace approximation
• Projective clustering
• Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival



Results: Adaptive Sampling

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 as a (turnstile) stream
Output: Return each set 𝑺𝑺 ⊂𝒌𝒌 [𝒏𝒏] of 𝑘𝑘 indices w.p. 𝒑𝒑𝑺𝑺 s.t.

∑𝑆𝑆 𝒑𝒑𝑺𝑺 − 𝒒𝒒𝑺𝑺 ≤ 𝜖𝜖
• 𝒒𝒒𝑺𝑺: prob. of selecting 𝑺𝑺 via adaptive sampling
• w.r.t. either distance or squared distance (i.e., 𝑝𝑝 ∈ {1,2})
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 In one pass

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑,𝑘𝑘, 𝜖𝜖−1, log𝑛𝑛) space

 Besides indices S, a noisy set of rows 𝑟𝑟1, … , 𝑟𝑟𝑘𝑘 are returned 
• Each 𝑟𝑟𝑖𝑖 is close to the corresponding 𝐴𝐴𝑖𝑖 (w.r.t. residual)



Results: Adaptive Sampling

Impossible to return the row accurately in sublinear space
 A long stream of small updates  +  an arbitrarily large update

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 as a (turnstile) stream
Output: Return each set 𝑺𝑺 ⊂𝒌𝒌 [𝒏𝒏] of 𝑘𝑘 indices w.p. 𝒑𝒑𝑺𝑺 s.t.
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Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
• 𝐿𝐿𝑝𝑝,2 sampling with post processing matrix 𝑃𝑃

2. Applications in turnstile stream
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Applications: Row Subset Selection 

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0

Output: 𝒌𝒌 rows of 𝐴𝐴 to form 𝑴𝑴 to minimize 𝐴𝐴 − 𝐴𝐴𝑀𝑀+𝑀𝑀 𝐹𝐹



Applications: Row Subset Selection 

Our Result: finds M such that,
Pr[ 𝐴𝐴 − 𝐴𝐴𝑴𝑴+𝑴𝑴 𝐹𝐹

2 ≤ 𝟏𝟏𝟏𝟏 𝒌𝒌 + 𝟏𝟏 ! 𝐴𝐴 − 𝐴𝐴𝑘𝑘 𝐹𝐹
2 ] ≥ 2/3

• 𝐴𝐴𝑘𝑘: best rank-k approximation of 𝐴𝐴
• first one pass turnstile streaming algorithm
• 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑,𝑘𝑘, log𝑛𝑛) space

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0
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Applications: Row Subset Selection 

Our Result: finds M such that,
Pr[ 𝐴𝐴 − 𝐴𝐴𝑴𝑴+𝑴𝑴 𝐹𝐹

2 ≤ 𝟏𝟏𝟏𝟏 𝒌𝒌 + 𝟏𝟏 ! 𝐴𝐴 − 𝐴𝐴𝑘𝑘 𝐹𝐹
2 ] ≥ 2/3

• 𝐴𝐴𝑘𝑘: best rank-k approximation of 𝐴𝐴
• first one pass turnstile streaming algorithm
• 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑,𝑘𝑘, log𝑛𝑛) space

Previous works: centralized setting [e.g. DRVW06, BMD09, GS’12] and row arrival 
[e.g., CMM’17, GP’14 , BDMMUWZ’18]

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0

Output: 𝒌𝒌 rows of 𝐴𝐴 to form 𝑴𝑴 to minimize 𝐴𝐴 − 𝐴𝐴𝑀𝑀+𝑀𝑀 𝐹𝐹



Applications: Subspace Approximation

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0
Output: 𝒌𝒌-dim subspace 𝑯𝑯 to minimize ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 𝑝𝑝 1/𝑝𝑝

• 𝑝𝑝 ∈ 1,2
• 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 = 𝐴𝐴𝑖𝑖 𝕀𝕀 − 𝐻𝐻+𝐻𝐻 2



Applications: Subspace Approximation

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0
Output: 𝒌𝒌-dim subspace 𝑯𝑯 to minimize ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 𝑝𝑝 1/𝑝𝑝

• 𝑝𝑝 ∈ 1,2
• 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 = 𝐴𝐴𝑖𝑖 𝕀𝕀 − 𝐻𝐻+𝐻𝐻 2

Our Result I: finds H (which is 𝒌𝒌 noisy rows of 𝑨𝑨) s.t.,

Pr[ ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝑯𝑯 𝑝𝑝 1/𝑝𝑝 ≤ 𝟒𝟒 𝒌𝒌 + 𝟏𝟏 ! ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑘𝑘 𝑝𝑝 1/𝑝𝑝] ≥ 2
3

• 𝐴𝐴𝑘𝑘: best rank-k approximation of A
• 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑,𝑘𝑘, log𝑛𝑛) space



Applications: Subspace Approximation

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0
Output: 𝒌𝒌-dim subspace 𝑯𝑯 to minimize ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 𝑝𝑝 1/𝑝𝑝

• 𝑝𝑝 ∈ 1,2
• 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 = 𝐴𝐴𝑖𝑖 𝕀𝕀 − 𝐻𝐻+𝐻𝐻 2

Our Result I: finds H (which is 𝒌𝒌 noisy rows of 𝑨𝑨) s.t.,

Pr[ ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝑯𝑯 𝑝𝑝 1/𝑝𝑝 ≤ 𝟒𝟒 𝒌𝒌 + 𝟏𝟏 ! ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑘𝑘 𝑝𝑝 1/𝑝𝑝] ≥ 2
3

• 𝐴𝐴𝑘𝑘: best rank-k approximation of A
• 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑,𝑘𝑘, log𝑛𝑛) space
• First relative error on turnstile streams that returns noisy rows of A
 [Levin, Sevekari, Woodruff’18] 

+(1 + 𝜖𝜖)-approximation –larger number of rows –rows are not from A



Applications: Subspace Approximation

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0
Output: 𝒌𝒌-dim subspace 𝑯𝑯 to minimize ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 𝑝𝑝 1/𝑝𝑝

• 𝑝𝑝 ∈ 1,2
• 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 = 𝐴𝐴𝑖𝑖 𝕀𝕀 − 𝐻𝐻+𝐻𝐻 2

Our Result II: finds H (which is 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒌𝒌,𝟏𝟏/𝝐𝝐) noisy rows of 𝑨𝑨) s.t.,

Pr[ ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝑯𝑯 𝑝𝑝 1/𝑝𝑝 ≤ 𝟏𝟏 + 𝝐𝝐 ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑘𝑘 𝑝𝑝 1/𝑝𝑝] ≥ 2
3

• 𝐴𝐴𝑘𝑘: best rank-k approximation of A
• 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒅𝒅,𝒌𝒌,𝟏𝟏/𝝐𝝐, 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏) space

 [Levin, Sevekari, Woodruff’18] 
–𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(log 𝑛𝑛𝑛𝑛 ,𝑘𝑘, 1/𝜖𝜖) rows –rows are not from A



Applications: Projective Clustering

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑, target dim 𝒌𝒌 and target number of subspaces 𝒔𝒔
Output: 𝒔𝒔 𝒌𝒌-dim subspaces 𝑯𝑯𝟏𝟏, … ,𝑯𝑯𝒔𝒔 to minimize ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝑯𝑯 𝑝𝑝 1/𝑝𝑝

• 𝑯𝑯 = 𝑯𝑯𝟏𝟏 ∪⋯∪𝑯𝑯𝒔𝒔 and 𝑝𝑝 ∈ 1,2
• 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 = min

𝑗𝑗∈ 𝑠𝑠
𝐴𝐴𝑖𝑖 𝕀𝕀 − 𝐻𝐻𝑗𝑗+𝐻𝐻𝑗𝑗 2



Applications: Projective Clustering

Our Result: finds S (which is 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒌𝒌, 𝒔𝒔,𝟏𝟏/𝝐𝝐) noisy rows of 𝑨𝑨),
which contains a union T of 𝑠𝑠 𝒌𝒌-dim subspaces s.t.,

Pr[ ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝑻𝑻 𝑝𝑝 1/𝑝𝑝 ≤ 𝟏𝟏 + 𝝐𝝐 ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝑯𝑯 𝑝𝑝 1/𝑝𝑝] ≥ 2/3
• 𝐻𝐻: optimal solution to projective clustering
• first one pass turnstile streaming algorithm with sublinear space
• 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑,𝑘𝑘, log𝑛𝑛 , 𝑠𝑠, 1/𝜖𝜖) space
 [BHI’02, HM’04, Che09, FMSW’10] based on coresets, works in row arrival
 [KR’15] turnstile but linear in number of points

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑, target dim 𝒌𝒌 and target number of subspaces 𝒔𝒔
Output: 𝒔𝒔 𝒌𝒌-dim subspaces 𝑯𝑯𝟏𝟏, … ,𝑯𝑯𝒔𝒔 to minimize ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝑯𝑯 𝑝𝑝 1/𝑝𝑝

• 𝑯𝑯 = 𝑯𝑯𝟏𝟏 ∪⋯∪𝑯𝑯𝒔𝒔 and 𝑝𝑝 ∈ 1,2
• 𝑑𝑑 𝐴𝐴𝑖𝑖 ,𝐻𝐻 = min

𝑗𝑗∈ 𝑠𝑠
𝐴𝐴𝑖𝑖 𝕀𝕀 − 𝐻𝐻𝑗𝑗+𝐻𝐻𝑗𝑗 2



Applications: Volume Maximization

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume



Applications: Volume Maximization

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Volume of the parallelepiped 
spanned by those vectors

𝒌𝒌 = 𝟐𝟐



Applications: Volume Maximization

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Our Result (Upper Bound I): for an approximation factor 𝜶𝜶, finds S
(set of 𝒌𝒌 noisy rows of 𝑨𝑨) s.t.,

Pr[𝛼𝛼𝑘𝑘 𝑘𝑘! Vol 𝐒𝐒 ≥ Vol(𝐌𝐌)] ≥ 2/3
• first one pass turnstile streaming algorithm
• �𝑂𝑂( ⁄𝑛𝑛𝑛𝑛𝑘𝑘2 𝛼𝛼2) space



Applications: Volume Maximization

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Our Result (Upper Bound I): for an approximation factor 𝜶𝜶, finds S
(set of 𝒌𝒌 noisy rows of 𝑨𝑨) s.t.,

Pr[𝛼𝛼𝑘𝑘 𝑘𝑘! Vol 𝐒𝐒 ≥ Vol(𝐌𝐌)] ≥ 2/3
• first one pass turnstile streaming algorithm
• �𝑂𝑂( ⁄𝑛𝑛𝑛𝑛𝑘𝑘2 𝛼𝛼2) space
 [Indyk, M, Oveis Gharan, Rezaei, ‘19 ‘20] coreset based �𝑂𝑂 𝑘𝑘 𝑘𝑘/𝜖𝜖 approx. and 
�𝑂𝑂(𝑛𝑛𝜖𝜖𝑘𝑘𝑘𝑘) space for row-arrival streams



Outline of Results

1. Simulate adaptive sampling in 1 pass turnstile stream
• 𝐿𝐿𝑝𝑝,2 sampling with post processing matrix 𝑃𝑃

2. Applications in turnstile stream
• Row/column subset selection
• Subspace approximation
• Projective clustering
• Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival



Volume Maximization Lower Bounds

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Our Result (Lower Bound I): for 𝜶𝜶, any 𝒑𝒑-pass algorithm that finds 
𝜶𝜶𝑘𝑘-approximation w.p. ≥ ⁄63 64 in turnstile-arrival requires 
Ω( ⁄𝑛𝑛 𝑘𝑘𝒑𝒑𝜶𝜶2) space.

• Our previous upper bound is matches the upper bound up to a 
factor of 𝒌𝒌𝟑𝟑𝒅𝒅 in space and 𝒌𝒌! in the approximation factor.



Volume Maximization Lower Bounds

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Our Result (Lower Bound II): for a fixed constant 𝑪𝑪, any one-pass 
algorithm that finds 𝑪𝑪𝒌𝒌-approximation w.p. ≥ ⁄63 64 in random 
order row-arrival requires Ω(𝑛𝑛) space



Volume Maximization – Row Arrival 

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Our Result (Upper Bound II): for an approximation factor 𝑪𝑪 < ⁄(log 𝑛𝑛) 𝑘𝑘, 
finds S (set of 𝒌𝒌 rows of 𝑨𝑨) s.t.
• approximation factor �𝑂𝑂 𝑪𝑪𝑘𝑘 𝑘𝑘/2 with high probability
• one pass row-arrival streaming algorithm
• �𝑂𝑂(𝑛𝑛𝑂𝑂(1/𝑪𝑪)𝑑𝑑) space



Volume Maximization – Row Arrival 

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Our Result (Upper Bound II): for an approximation factor 𝑪𝑪 < ⁄(log 𝑛𝑛) 𝑘𝑘, 
finds S (set of 𝒌𝒌 rows of 𝑨𝑨) s.t.
• approximation factor �𝑂𝑂 𝑪𝑪𝑘𝑘 𝑘𝑘/2 with high probability
• one pass row-arrival streaming algorithm
• �𝑂𝑂(𝑛𝑛𝑂𝑂(1/𝑪𝑪)𝑑𝑑) space

 [Indyk, M, Oveis Gharan, Rezaei, ‘19 ‘20] coreset based �𝑂𝑂 𝑘𝑘 𝑪𝑪𝒌𝒌/𝟐𝟐 approx. and �𝑂𝑂(𝑛𝑛𝟏𝟏/𝑪𝑪𝑘𝑘𝑘𝑘)
space for row-arrival streams



𝑳𝑳𝒑𝒑,𝟐𝟐 Sampler
1. Simulate adaptive sampling in 1 pass

• 𝐿𝐿𝑝𝑝,2 sampling with post processing matrix 𝑃𝑃

2. Applications in turnstile stream
• Row/column subset selection
• Subspace approximation
• Projective clustering
• Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler with Post-Processing Matrix

Input: matrix A as a data stream, a post-processing matrix P

Output: index 𝑖𝑖 of a row of AP sampled w.p. ~ 𝐴𝐴𝑖𝑖𝑃𝑃 2
2

𝐴𝐴𝐴𝐴 𝐹𝐹
2



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler with Post-Processing Matrix

Extension of 𝑳𝑳𝟐𝟐 Sampler 
[Andoni et al.’10][Monemizadeh, Woodruff’10][Jowhari et al.’11][Jayaram, Woodruff’18]

Input: matrix A as a data stream, a post-processing matrix P

Output: index 𝑖𝑖 of a row of AP sampled w.p. ~ 𝐴𝐴𝑖𝑖𝑃𝑃 2
2

𝐴𝐴𝐴𝐴 𝐹𝐹
2

Input: vector f as a data stream

Output: index 𝑖𝑖 of a coordinate of f sampled w.p. ~ 𝑓𝑓𝑖𝑖
2

𝐟𝐟 2
2



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler with Post-Processing Matrix

Extension of 𝑳𝑳𝟐𝟐 Sampler 
[Andoni et al.’10][Monemizadeh, Woodruff’10][Jowhari et al.’11][Jayaram, Woodruff’18]

Input: matrix A as a data stream, a post-processing matrix P

Output: index 𝑖𝑖 of a row of AP sampled w.p. ~ 𝐴𝐴𝑖𝑖𝑃𝑃 2
2

𝐴𝐴𝐴𝐴 𝐹𝐹
2

Input: vector f as a data stream

Output: index 𝑖𝑖 of a coordinate of f sampled w.p. ~ 𝑓𝑓𝑖𝑖
2

𝐟𝐟 2
2

What is new:
1. Generalizing vectors to matrices 
2. Handling the post processing matrix 𝑃𝑃



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler
Input: matrix A as a data stream

Output: index 𝑖𝑖 of a row of A sampled w.p. ~ 𝐴𝐴𝑖𝑖 2
2

𝐀𝐀 𝐹𝐹
2

Ignore 𝑃𝑃 for now



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖
Pr[ 𝐵𝐵𝑖𝑖 2

2 ≥ 𝐴𝐴 𝐹𝐹
2 ] = Pr[ 𝐴𝐴𝑖𝑖 2

2

𝐴𝐴 𝐹𝐹
2 ≥ 𝑡𝑡𝑖𝑖] = 𝑨𝑨𝒊𝒊 𝟐𝟐

𝟐𝟐

𝑨𝑨 𝑭𝑭
𝟐𝟐

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖

 Return 𝑖𝑖 that satisfies  𝑩𝑩𝒊𝒊 𝟐𝟐
𝟐𝟐 ≥ 𝑨𝑨 𝑭𝑭

𝟐𝟐

Pr[ 𝐵𝐵𝑖𝑖 2
2 ≥ 𝐴𝐴 𝐹𝐹

2 ] = Pr[ 𝐴𝐴𝑖𝑖 2
2

𝐴𝐴 𝐹𝐹
2 ≥ 𝑡𝑡𝑖𝑖] = 𝑨𝑨𝒊𝒊 𝟐𝟐

𝟐𝟐

𝑨𝑨 𝑭𝑭
𝟐𝟐

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖

 Return 𝑖𝑖 that satisfies  𝑩𝑩𝒊𝒊 𝟐𝟐
𝟐𝟐 ≥ 𝑨𝑨 𝑭𝑭

𝟐𝟐

Pr[ 𝐵𝐵𝑖𝑖 2
2 ≥ 𝐴𝐴 𝐹𝐹

2 ] = Pr[ 𝐴𝐴𝑖𝑖 2
2

𝐴𝐴 𝐹𝐹
2 ≥ 𝑡𝑡𝑖𝑖] = 𝑨𝑨𝒊𝒊 𝟐𝟐

𝟐𝟐

𝑨𝑨 𝑭𝑭
𝟐𝟐

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Issues:
1. Multiple rows passing the threshold 

2. Don’t have access to exact values of 𝑩𝑩𝒊𝒊 𝟐𝟐
𝟐𝟐 and 𝑨𝑨 𝑭𝑭

𝟐𝟐



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖
 Ideally, return the only 𝒊𝒊 that satisfies 𝑩𝑩𝒊𝒊 𝟐𝟐

𝟐𝟐 ≥ 𝑨𝑨 𝑭𝑭
𝟐𝟐

𝜸𝜸𝟐𝟐: = 𝑪𝑪 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏
𝝐𝝐

Pr[ 𝐵𝐵𝑖𝑖 2
2 ≥ 𝜸𝜸𝟐𝟐 ⋅ 𝐴𝐴 𝐹𝐹

2 ] = 𝟏𝟏
𝜸𝜸𝟐𝟐

× 𝑨𝑨𝒊𝒊 𝟐𝟐
𝟐𝟐

𝑨𝑨 𝑭𝑭
𝟐𝟐

Issue 1: Multiple rows passing the threshold 
 Set the threshold higher



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖
 Ideally, return the only 𝒊𝒊 that satisfies 𝑩𝑩𝒊𝒊 𝟐𝟐

𝟐𝟐 ≥ 𝑨𝑨 𝑭𝑭
𝟐𝟐

𝜸𝜸𝟐𝟐: = 𝑪𝑪 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏
𝝐𝝐

Pr[squared norm of at least one row exceeds 𝜸𝜸𝟐𝟐 ⋅ 𝐴𝐴 𝐹𝐹
2 ] = Ω( 1

𝛾𝛾2
)

Pr[squared norms of more than one row exceed 𝜸𝜸𝟐𝟐 ⋅ 𝐴𝐴 𝐹𝐹
2 ] = O( 1

𝛾𝛾4
)

Pr[ 𝐵𝐵𝑖𝑖 2
2 ≥ 𝜸𝜸𝟐𝟐 ⋅ 𝐴𝐴 𝐹𝐹

2 ] = 𝟏𝟏
𝜸𝜸𝟐𝟐

× 𝑨𝑨𝒊𝒊 𝟐𝟐
𝟐𝟐

𝑨𝑨 𝑭𝑭
𝟐𝟐

Success prob: Ω( 𝜖𝜖
log 𝑛𝑛

)

Issue 1: Multiple rows passing the threshold 
 Set the threshold higher



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖
 Ideally, return the only 𝒊𝒊 that satisfies 𝑩𝑩𝒊𝒊 𝟐𝟐

𝟐𝟐 ≥ 𝑨𝑨 𝑭𝑭
𝟐𝟐

𝜸𝜸𝟐𝟐: = 𝑪𝑪 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏
𝝐𝝐

To succeed, repeat �𝑶𝑶(𝟏𝟏/𝝐𝝐)

Pr[ 𝐵𝐵𝑖𝑖 2
2 ≥ 𝜸𝜸𝟐𝟐 ⋅ 𝐴𝐴 𝐹𝐹

2 ] = 𝟏𝟏
𝜸𝜸𝟐𝟐

× 𝑨𝑨𝒊𝒊 𝟐𝟐
𝟐𝟐

𝑨𝑨 𝑭𝑭
𝟐𝟐

Success prob: Ω( 𝜖𝜖
log 𝑛𝑛

)

Issue 1: Multiple rows passing the threshold 
 Set the threshold higher



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖
 Return 𝒊𝒊 that satisfies 𝑩𝑩𝒊𝒊 𝟐𝟐 ≥ 𝜸𝜸 ⋅ 𝑨𝑨 𝑭𝑭

Issue 2: Don’t have access to exact values of 𝑩𝑩𝒊𝒊 and 𝑨𝑨 F

 estimate 𝑩𝑩𝒊𝒊 𝟐𝟐 and 𝑨𝑨 𝑭𝑭



𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖
 Return 𝒊𝒊 that satisfies 𝑩𝑩𝒊𝒊 𝟐𝟐 ≥ 𝜸𝜸 ⋅ 𝑨𝑨 𝑭𝑭

Issue 2: Don’t have access to exact values of 𝑩𝑩𝒊𝒊 and 𝑨𝑨 F

 estimate 𝑩𝑩𝒊𝒊 𝟐𝟐 and 𝑨𝑨 𝑭𝑭

Estimate norm 
of A using AMS

Find heaviest row 
using CountSketch



Estimate 𝑩𝑩𝒊𝒊 𝟐𝟐 for rows with large norms

Count Sketch



Given a stream of items, estimate frequency of each item (i.e., coordinates 
in a vector)

#rows r  =𝑂𝑂(log𝑛𝑛)
#buckets/row   b = 𝑂𝑂(1/𝜖𝜖2)

Count Sketch

𝑓𝑓𝑖𝑖

+𝑓𝑓𝑖𝑖ℎ1(𝑖𝑖)

• Hash ℎ𝑗𝑗: 𝑛𝑛 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑛𝑛 → {−1, +1}

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ 𝑓𝑓𝑖𝑖

•



Given a stream of items, estimate frequency of each item (i.e., coordinates 
in a vector)

#rows r  =𝑂𝑂(log𝑛𝑛)
#buckets/row   b = 𝑂𝑂(1/𝜖𝜖2)

Count Sketch

𝑓𝑓𝑖𝑖

+𝑓𝑓𝑖𝑖

• Hash ℎ𝑗𝑗: 𝑛𝑛 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑛𝑛 → {−1, +1}

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ 𝑓𝑓𝑖𝑖

•
−𝑓𝑓𝑖𝑖ℎ2(𝑖𝑖)



Given a stream of items, estimate frequency of each item (i.e., coordinates 
in a vector)

#rows r  =𝑂𝑂(log𝑛𝑛)
#buckets/row   b = 𝑂𝑂(1/𝜖𝜖2)

Count Sketch

𝑓𝑓𝑖𝑖

+𝑓𝑓𝑖𝑖

• Hash ℎ𝑗𝑗: 𝑛𝑛 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑛𝑛 → {−1, +1}

−𝑓𝑓𝑖𝑖
+𝑓𝑓𝑖𝑖ℎ3(𝑖𝑖)

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ 𝑓𝑓𝑖𝑖

•



Given a stream of items, estimate frequency of each item (i.e., coordinates 
in a vector)

#rows r  =𝑂𝑂(log𝑛𝑛)
#buckets/row   b = 𝑂𝑂(1/𝜖𝜖2)

Count Sketch

𝑓𝑓𝑖𝑖

+𝑓𝑓𝑖𝑖

• Hash ℎ𝑗𝑗: 𝑛𝑛 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑛𝑛 → {−1, +1}

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ 𝑓𝑓𝑖𝑖

• Estimate 𝑓𝑓𝑖𝑖 ≔ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑗𝑗 𝜎𝜎𝑗𝑗𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)]
−𝑓𝑓𝑖𝑖

+𝑓𝑓𝑖𝑖



Given a stream of items, estimate frequency of each item (i.e., coordinates 
in a vector)

#rows r  =𝑂𝑂(log𝑛𝑛)
#buckets/row   b = 𝑂𝑂(1/𝜖𝜖2)

Count Sketch

𝑓𝑓𝑖𝑖

+𝑓𝑓𝑖𝑖
−𝑓𝑓𝑖𝑖

+𝑓𝑓𝑖𝑖

Estimation guarantee
𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖 ≤ 𝜖𝜖 ⋅ 𝐟𝐟 2

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ 𝑓𝑓𝑖𝑖

• Estimate 𝑓𝑓𝑖𝑖 ≔ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑗𝑗 𝜎𝜎𝑗𝑗𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)]



Estimate 𝑩𝑩𝒊𝒊 𝟐𝟐 for rows with large norms

#rows r  =𝑂𝑂(log𝑛𝑛)
#buckets/row   b = 𝑂𝑂(1/𝜖𝜖2)

Count Sketch

𝐵𝐵𝑖𝑖

+𝐵𝐵𝑖𝑖
−𝐵𝐵𝑖𝑖

+𝐵𝐵𝑖𝑖

Estimation guarantee

𝐵𝐵𝑖𝑖 2 − �𝐵𝐵𝑖𝑖 2 ≤ 𝜖𝜖 ⋅ 𝐵𝐵 𝐹𝐹

Space usage:

𝑂𝑂 log𝑛𝑛 ×
1
𝜖𝜖2

× 𝑑𝑑



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Goal: 𝐵𝐵𝑖𝑖 2 ≥ 𝜸𝜸 ⋅ 𝐴𝐴 𝐹𝐹



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖

Step 2. 
• �𝑩𝑩𝒊𝒊 𝟐𝟐is an estimate of 𝑩𝑩𝒊𝒊 𝟐𝟐 by modified Countsketch
• �𝑭𝑭 is an estimate of 𝑨𝑨 𝑭𝑭 by modified AMS

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Goal: 𝐵𝐵𝑖𝑖 2 ≥ 𝜸𝜸 ⋅ 𝐴𝐴 𝐹𝐹

Test: �𝐵𝐵𝑖𝑖 2 ≥ 𝜸𝜸 ⋅ �𝐹𝐹



Step 1. 
• pick 𝑡𝑡𝑖𝑖 ∈ [0,1] uniformly at random
• set 𝐵𝐵𝑖𝑖 ≔

𝟏𝟏
𝒕𝒕𝒊𝒊

× 𝐴𝐴𝑖𝑖

Step 2. 
• �𝑩𝑩𝒊𝒊 𝟐𝟐is an estimate of 𝑩𝑩𝒊𝒊 𝟐𝟐 by modified Countsketch
• �𝑭𝑭 is an estimate of 𝑨𝑨 𝑭𝑭 by modified AMS

 The test succeeds w.p. 𝜖𝜖, the estimate of largest row exceeds the threshold

𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

Goal: 𝐵𝐵𝑖𝑖 2 ≥ 𝜸𝜸 ⋅ 𝐴𝐴 𝐹𝐹

Test: �𝐵𝐵𝑖𝑖 2 ≥ 𝜸𝜸 ⋅ �𝐹𝐹



Handling Post-Processing Matrix

Input: matrix A as a data stream, a post-processing matrix P

Output: index 𝑖𝑖 of a row of AP sampled w.p. ~ 𝐴𝐴𝑖𝑖𝑃𝑃 2
2

𝐴𝐴𝐴𝐴 𝐹𝐹
2



Handling Post-Processing Matrix

Run proposed algorithm on A, then multiply by P:
• CountSketch and AMS both are linear transformations

 A is mapped to SA
 S (AP) = (SA) P

Input: matrix A as a data stream, a post-processing matrix P

Output: index 𝑖𝑖 of a row of AP sampled w.p. ~ 𝐴𝐴𝑖𝑖𝑃𝑃 2
2

𝐴𝐴𝐴𝐴 𝐹𝐹
2



Handling Post-Processing Matrix

Run proposed algorithm on A, then multiply by P:
• CountSketch and AMS both are linear transformations

 A is mapped to SA
 S (AP) = (SA) P

Total space for sampler: 𝑂𝑂( 𝑑𝑑
𝜖𝜖2

log2 𝑛𝑛) bits

Input: matrix A as a data stream, a post-processing matrix P

Output: index 𝑖𝑖 of a row of AP sampled w.p. ~ 𝐴𝐴𝑖𝑖𝑃𝑃 2
2

𝐴𝐴𝐴𝐴 𝐹𝐹
2



𝑳𝑳𝟐𝟐,𝟐𝟐 sampling with post processing
Input:
• 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 as a (turnstile) stream
• a post-processing 𝑷𝑷 ∈ ℝ𝑑𝑑×𝑑𝑑

Output: samples an index 𝑖𝑖 ∈ [𝑛𝑛] w.p. 1 ± 𝜖𝜖 𝑨𝑨𝒊𝒊𝑷𝑷 2
2

𝑨𝑨𝑨𝑨 𝐹𝐹
2 + 1

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛)
 In one pass
 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑, 𝜖𝜖−1, log𝑛𝑛) space



Adaptive Sampler
1. Simulate adaptive sampling in 1 pass

• 𝐿𝐿𝑝𝑝,2 sampling with post processing matrix 𝑃𝑃

2. Applications in turnstile stream
• Row/column subset selection
• Subspace approximation
• Projective clustering
• Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival



Algorithm Using 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler
Maintain 𝑘𝑘 instances of 𝐿𝐿2,2 sampler with post processing: 𝑺𝑺𝟏𝟏, … ,𝑺𝑺𝒌𝒌
𝑀𝑀 ← ∅
For round 𝑖𝑖 = 1 to 𝑘𝑘,

• Set 𝑃𝑃 ← 𝐼𝐼 −𝑀𝑀+𝑀𝑀
• Use 𝑺𝑺𝒊𝒊 to sample a noisy row 𝑟𝑟𝑗𝑗 of 𝐴𝐴 with post processing matrix 𝑃𝑃
• Append 𝑟𝑟𝑗𝑗 to 𝑀𝑀



Algorithm Using 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler
Maintain 𝑘𝑘 instances of 𝐿𝐿2,2 sampler with post processing: 𝑺𝑺𝟏𝟏, … ,𝑺𝑺𝒌𝒌
𝑀𝑀 ← ∅
For round 𝑖𝑖 = 1 to 𝑘𝑘,

• Set 𝑃𝑃 ← 𝐼𝐼 −𝑀𝑀+𝑀𝑀
• Use 𝑺𝑺𝒊𝒊 to sample a noisy row 𝑟𝑟𝑗𝑗 of 𝐴𝐴 with post processing matrix 𝑃𝑃
• Append 𝑟𝑟𝑗𝑗 to 𝑀𝑀

Issues:
X Noisy perturbation of rows (unavoidable)
 Sample 𝑗𝑗, 
 𝑟𝑟𝑗𝑗 = A𝑗𝑗𝑃𝑃 + v where v has small norm v < 𝜖𝜖 𝐴𝐴𝑗𝑗𝑃𝑃 thus 𝑟𝑟𝑗𝑗 ≈ 𝐴𝐴𝑗𝑗𝑃𝑃



Algorithm Using 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler
Maintain 𝑘𝑘 instances of 𝐿𝐿2,2 sampler with post processing: 𝑺𝑺𝟏𝟏, … ,𝑺𝑺𝒌𝒌
𝑀𝑀 ← ∅
For round 𝑖𝑖 = 1 to 𝑘𝑘,

• Set 𝑃𝑃 ← 𝐼𝐼 −𝑀𝑀+𝑀𝑀
• Use 𝑺𝑺𝒊𝒊 to sample a noisy row 𝑟𝑟𝑗𝑗 of 𝐴𝐴 with post processing matrix 𝑃𝑃
• Append 𝑟𝑟𝑗𝑗 to 𝑀𝑀

Issues:
X Noisy perturbation of rows (unavoidable)
 Sample 𝑗𝑗, 
 𝑟𝑟𝑗𝑗 = A𝑗𝑗𝑃𝑃 + v where v has small norm v < 𝜖𝜖 𝐴𝐴𝑗𝑗𝑃𝑃 thus 𝑟𝑟𝑗𝑗 ≈ 𝐴𝐴𝑗𝑗𝑃𝑃

X This can drastically change the probabilities: may zero out probabilities of some rows



Bad Example

𝑨𝑨𝟏𝟏 = (𝑴𝑴,𝟎𝟎)
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Bad Example

x We cannot hope for a multiplicative bound on probabilities.

Lemma: Not only the norm of 𝑣𝑣 is small in compare to 𝐴𝐴𝑗𝑗 but also its norm projected 
away from 𝐴𝐴𝑗𝑗 is small: 

• 𝑟𝑟𝑗𝑗 = 𝐴𝐴𝑗𝑗𝑃𝑃 + 𝑣𝑣

• where 𝒗𝒗𝑸𝑸 ≤ 𝜖𝜖 𝐴𝐴𝑗𝑗𝑃𝑃 ⋅ 𝑨𝑨𝑨𝑨𝑸𝑸 𝑭𝑭
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 Bound the additive error of sampling probabilities in subsequent rounds
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Suppose indices reported by our algorithm are 𝑗𝑗1, … , 𝑗𝑗𝑘𝑘
Consider two bases 𝑼𝑼 and 𝑾𝑾
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Difference between the correct prob and our algorithm 
sampling prob over all rows is 𝜖𝜖 for one round

• Change of basis matrix ≈ Identity matrix
• Bound total variation distance by 𝜖𝜖

Error in each round gets propagated 𝑘𝑘 times

Total error is O(𝑘𝑘2𝜖𝜖)



Theorem:
Our algorithm reports a set of 𝑘𝑘 indices such that with high probability 
• the total variation distance between the probability distribution output by the 

algorithm and the probability distribution of adaptive sampling is at most 𝑂𝑂(𝜖𝜖)

• The algorithm uses space 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘, 1
𝜖𝜖

,𝑑𝑑, log𝑛𝑛)



Applications
1. Simulate adaptive sampling in 1 pass

• 𝐿𝐿𝑝𝑝,2 sampling with post processing matrix 𝑃𝑃

2. Applications in turnstile stream
• Row/column subset selection
• Subspace approximation
• Projective clustering
• Volume Maximization

3. Volume maximization lower bounds

4. Volume maximization in row arrival



Applications
Main Challenge: it suffices to get a noisy perturbation of the rows



Applications: Row Subset Selection 

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0

Output: 𝒌𝒌 rows of 𝐴𝐴 to form 𝑴𝑴 to minimize 𝐴𝐴 − 𝐴𝐴𝑀𝑀+𝑀𝑀 𝐹𝐹



Applications: Row Subset Selection
Adaptive Sampling provides a 𝒌𝒌 + 𝟏𝟏 ! approximation for subset selection

 [DRVW’06]: Volume Sampling  provides a 𝑘𝑘 + 1 factor approximation to row subset selection 
with constant probability.

 [DV’06]: Sampling probabilities for any 𝑘𝑘-set 𝑆𝑆 produced by Adaptive Sampling is at most 𝑘𝑘! of its 
sampling probability with respect to volume sampling.



Applications: Row Subset Selection
Adaptive Sampling provides a 𝒌𝒌 + 𝟏𝟏 ! approximation for subset selection

 [DRVW’06]: Volume Sampling  provides a 𝑘𝑘 + 1 factor approximation to row subset selection 
with constant probability.

 [DV’06]: Sampling probabilities for any 𝑘𝑘-set 𝑆𝑆 produced by Adaptive Sampling is at most 𝑘𝑘! of its 
sampling probability with respect to volume sampling.

Non-adaptive Adaptive Sampling provides a good approximation to Adaptive Sampling



Applications: Row Subset Selection
Adaptive Sampling provides a 𝒌𝒌 + 𝟏𝟏 ! approximation for subset selection

 [DRVW’06]: Volume Sampling  provides a 𝑘𝑘 + 1 factor approximation to row subset selection 
with constant probability.

 [DV’06]: Sampling probabilities for any 𝑘𝑘-set 𝑆𝑆 produced by Adaptive Sampling is at most 𝑘𝑘! of its 
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1. For a set of indices 𝑱𝑱 output by our algorithm, 𝐴𝐴 𝐼𝐼 − 𝑅𝑅+𝑅𝑅 F ≤ (1 + 𝜖𝜖) 𝐴𝐴 𝐼𝐼 −𝑀𝑀+𝑀𝑀 F, w.h.p.

• 𝑅𝑅: the set of noisy rows corresponding to 𝑱𝑱
• 𝑀𝑀: the set of true rows corresponding to 𝑱𝑱
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Adaptive Sampling provides a 𝒌𝒌 + 𝟏𝟏 ! approximation for subset selection

 [DRVW’06]: Volume Sampling  provides a 𝑘𝑘 + 1 factor approximation to row subset selection 
with constant probability.

 [DV’06]: Sampling probabilities for any 𝑘𝑘-set 𝑆𝑆 produced by Adaptive Sampling is at most 𝑘𝑘! of its 
sampling probability with respect to volume sampling.

Non-adaptive Adaptive Sampling provides a good approximation to Adaptive Sampling

1. For a set of indices 𝑱𝑱 output by our algorithm, 𝐴𝐴 𝐼𝐼 − 𝑅𝑅+𝑅𝑅 F ≤ (1 + 𝜖𝜖) 𝐴𝐴 𝐼𝐼 −𝑀𝑀+𝑀𝑀 F, w.h.p.

• 𝑅𝑅: the set of noisy rows corresponding to 𝑱𝑱
• 𝑀𝑀: the set of true rows corresponding to 𝑱𝑱

2. For most 𝑘𝑘-sets 𝑱𝑱, its prob. by adaptive sampling is within 𝑂𝑂(1) factor of Non-adaptive Sampling. 



Applications: Row Subset Selection 

Our Result: finds M such that,
Pr[ 𝐴𝐴 − 𝐴𝐴𝑴𝑴+𝑴𝑴 𝐹𝐹

2 ≤ 16 𝑘𝑘 + 1 ! 𝐴𝐴 − 𝐴𝐴𝑘𝑘 𝐹𝐹
2 ] ≥ 2/3

• 𝐴𝐴𝑘𝑘: best rank-k approximation of 𝐴𝐴
• first one pass turnstile streaming algorithm
• 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑,𝑘𝑘, log𝑛𝑛) space

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌 > 0

Output: 𝒌𝒌 rows of 𝐴𝐴 to form 𝑴𝑴 to minimize 𝐴𝐴 − 𝐴𝐴𝑀𝑀+𝑀𝑀 𝐹𝐹



Applications: Volume Maximization

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume



Applications: Volume Maximization

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Volume of the parallelepiped 
spanned by those vectors

𝒌𝒌 = 𝟐𝟐



Applications: Volume Maximization
[Civril, Magdon’09] Greedy Algorithm Provides a 𝒌𝒌! approximation to Volume Maximization

Greedy

• For 𝑘𝑘 rounds, pick the vector that is farthest away from the current 
subspace.

𝒌𝒌 = 𝟐𝟐
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[Civril, Magdon’09] Greedy Algorithm Provides a 𝒌𝒌! approximation to Volume Maximization

 If the largest row exceeds the threshold, then it is correctly found by CountSketch w.h.p.

 Otherwise, there are enough large rows and sampler chooses one of them w.h.p. 
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• For 𝑘𝑘 rounds,
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𝟐𝟐, instead sample row 𝒓𝒓 according to norms of rows



Applications: Volume Maximization
[Civril, Magdon’09] Greedy Algorithm Provides a 𝒌𝒌! approximation to Volume Maximization

 If the largest row exceeds the threshold, then it is correctly found by CountSketch w.h.p.

 Otherwise, there are enough large rows and sampler chooses one of them w.h.p. 

Simulate Greedy

• Maintain 𝑘𝑘 instances of CountSketch, AMS and 𝑳𝑳𝟐𝟐,𝟐𝟐 Sampler

• For 𝑘𝑘 rounds,
• Let 𝒓𝒓 be the row of 𝐴𝐴𝐴𝐴 with largest norm   //by CountSketch

• If 𝒓𝒓 𝟐𝟐 < 𝛼𝛼2

4𝑛𝑛𝑛𝑛
𝑨𝑨𝑨𝑨 𝑭𝑭

𝟐𝟐, instead sample row 𝒓𝒓 according to norms of rows

• Add 𝑟𝑟 to the solution, and update the postprocessing matrix 𝑃𝑃



Applications: Volume Maximization

Input: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 and an integer 𝒌𝒌
Output: 𝒌𝒌 rows 𝒓𝒓𝟏𝟏, … , 𝒓𝒓𝒌𝒌 of 𝐴𝐴, 𝑴𝑴, with maximum volume

Our Result: for an approximation factor 𝜶𝜶, finds S (set of 𝒌𝒌 noisy rows of 𝑨𝑨) 
s.t.,

Pr[𝛼𝛼𝑘𝑘 𝑘𝑘! Vol 𝐒𝐒 ≥ Vol(𝐌𝐌)] ≥ 2/3
• first one pass turnstile streaming algorithm
• �𝑂𝑂( ⁄𝑛𝑛𝑛𝑛𝑘𝑘2 𝛼𝛼2) space
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𝜶𝜶𝒌𝒌 𝒌𝒌! �𝑶𝑶( ⁄𝒏𝒏𝒏𝒏𝒌𝒌𝟐𝟐 𝜶𝜶𝟐𝟐)
𝜶𝜶𝒌𝒌 𝛀𝛀( ⁄𝒏𝒏 𝒌𝒌𝒌𝒌𝜶𝜶𝟐𝟐) 𝒑𝒑 pass

Row 
Arrival

𝑪𝑪𝒌𝒌 𝛀𝛀(𝒏𝒏) Random Order
�𝑶𝑶 𝑪𝑪𝑪𝑪 𝒌𝒌/𝟐𝟐 �𝑶𝑶(𝒏𝒏𝑶𝑶(𝟏𝟏/𝑪𝑪)𝒅𝒅) 𝑪𝑪 < ⁄(𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏) 𝒌𝒌



Open problems

• Get tight dependence on the parameters
• Further applications of non-adaptive adaptive sampling

• Result on Volume Maximization in row arrival model is not tight, i.e., can we get 𝑂𝑂(𝑘𝑘)𝑘𝑘 approximation without 
dependence on 𝑛𝑛?
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Open problems

• Get tight dependence on the parameters
• Further applications of non-adaptive adaptive sampling

• Result on Volume Maximization in row arrival model is not tight, i.e., can we get 𝑂𝑂(𝑘𝑘)𝑘𝑘 approximation without 
dependence on 𝑛𝑛?

Thank You!
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